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The problem of the scattering of a steady plane acoustic wave by a spherical elastic shell is considered. A procedure is proposed 
for constructing an approximate solution, based on matching the expansions for different asymptotic models of the interaction 
of the shell with the acoustic medium. In the neighbourhood of zero frequency and thickness-resonance frequencies, long-wave 
low-frequency approximations of the equations of the theory of elasticity (the Kirchhoff-Love theory of shells or its refinement) 
and long-wave high-frequency approximations respectively are employed. Outside these neighbourhoods a flat-layer model is 
used. A comparison with the exact solution confirms that the proposed approach enables one to describe, with a uniform small 
error, the scattered pressure and the resonance components of the partial modes over a fairly wide frequency band. 0 2002 Elsevier 
Science Ltd. All rights reserved. 

Asymptotic models of the interaction of a shell with an acoustic medium are based on asymptotic 
approximations of the three-dimensional equations of the theory of elasticity, which constitute the 
modern dynamic theory of shells (see, for example, [l]). The classical Kirchhoff-Love theory of shells 
and its refinements can be related to the low-frequency approximations. In the high-frequency region 
there are two types of asymptotic approximations. The long-wave high-frequency approximation 
describes the oscillation of a shell at frequencies close to the thickness-resonance frequencies of tension 
or shear. For the short-wave high-frequency approximation a characteristic feature is the small effect 
of the curvature of the shell. 

The presence of regions where the asymptotic approximations agree enables them to be matched to 
one another in order to obtain a uniform approximation over a wide frequency band. For example, by 
matching the solutions corresponding to the Kirchhoff-Love theory, the theory of long-wave high- 
frequency oscillations and the plane (antiplane) theory of elasticity one can completely approximate 
the dispersion curves for a cylindrical shell [2]. 

Below we present a procedure for matching the asymptotic approximations in the problem of the 
scattering of a plane acoustic wave by a spherical shell. Asymptotic models, developed on the basis of 
the above-mentioned approximations and which describe the interaction of the shell with an acoustic 
medium, are used. In the neighbourhood of zero frequency an asymptotic model is employed based 
on the refined Kirchhoff-Love theory of shells [3,4], in the neighbourhood of the thickness-resonance 
frequencies the theory of long-wave high-frequency oscillations of a shell, immersed in a liquid [5] is 
used, and outside these neighbourhoods a model of the flat-layer type [6], corresponding to the short- 
wave high-frequency approximation is employed. As is shown below, the region of applicability of the 
latter model overlaps the regions of applicability of the first two in the low-frequency region and in the 
region of the thickness-resonance frequencies respectively, which enables us to construct a uniform 
approximate solution both for the scattered pressure, and for the resonance components of the partial 
modes. A comparison with the exact solution [7] confirms that the proposed method is highly effective. 

1. FORMULATION OF THE PROBLEM 

Consider the scattering of a steady plane acoustic wave by a spherical shell. The pressure is the incident 
wave has the form 

pi = p. exp[-i(k5 + or)] (1.1) 
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where pO is a constant, which has the dimensions of pressure, k is the wave number, w is the cyclic 
frequency, t is the time and 5 is a spatial coordinate directed opposite to the direction of motion of the 
wave. Suppose a and b are the outer and inner radii of the shell respectively, /r = (a - 6)/2 is the half- 
thickness of the shell and R = (a + b)/2 is the radius of the middle surface. 

We will refer the shell to a spherical system of coordinates. Since the problem is axisymmetrical, all 
the quantities depend only on two coordinates (r, 0). We will introduce the dimensionless parameters 

x=pIp,, pi=cilc, i=l,2; Y=c~/c,, k=wlc (1.2) 

where ci and c2 are the velocities of the dilatation and distortion waves in the shell, respectively, p1 is 
the density of the shell material, c is the velocity of sound in the fluid, and p is the fluid density. The 
pressure in the incident wave can be represented in the form [8] 

pi = pO 5 (-i)“(2n+ I)j,(kr)P,(cosO) 
n=O 

(1.3) 

In formula (1.3) j, is the spherical Bessel function, P, is a Legendre polynomial, and the time factor 
exp(iot) is omitted here and henceforth. 

The scattered pressure can also be represented in the form of a series in Legendre polynomials 

ps = PO i (-V( 2n + I)B,$;“(kr)P,(cose) (1.4) 
n=O 

where B, are the required constants and h, is the spherical Hankel function of the first kind. 
Representations (1.3) and (1.4) satisfy Helmholtz’ equation for the excess pressure in the fluid, and 
the scattered pressurep, satisfies the radiation condition as r + 00. The coefficients B, are found from 
the contact problem for the equations describing the motion of the shell. The solution corresponding 
to the three-dimensional equations of the theory of elasticity were obtained earlier in [7]. 

We will further assume that the shell thickness is small, i.e. the thin-wall parameter TJ = h/R is small, 
and we will consider the asymptotic models of the interaction of the shell with the fluid. 

2. THE FLAT-LAYER MODEL 

The model of a “dry” flat layer has been widely used (see, for example, [S]) for the approximate 
determination of the resonance frequencies. This approach is based on an analogy between peripheral 
waves, which occur in the shell when the acoustic pressure is scattered, and Lamb waves in the layer. 
For the case of a circular cylindrical shell an asymptotic model was constructed in [6], which is a 
development of the flat-layer model and enables the interaction between the shell and the fluid to be 
described, i.e. one can determine not only the resonance frequencies but also the scattered pressure 
and the forms of the resonance curves. In this paper we will apply this model to a spherical shell. 

In the flat-layer type model the equations of the shell oscillations have the form 

(2.1) 

where cp and tl~ are the Lame potentials. The stress-strain characteristics of the state of the shell can 
be expressed in terms of these in the form 

(2.2) 
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The change from the equations of the theory of elasticity in a spherical system of coordinates to Eqs 
(2.1) and (2.2) rests on the assumption 

a/a&m3-oRlc, -?-p (2.3) 

which define the short-wave oscillations of the shell, to which resonances of large numbers (n - q-l) 
correspond. Conditions (2.3) enable us to retain only higher derivatives in the equations of the theory 
of elasticity and to freeze the radial coordinate r on the middle surface. On the front surfaces of the 
shell we have the boundary conditions 

o’IC=n =-(Pi + P,)l,=,* 

q= -q = 0. or+ I<=_, = 0 

The pressures p, and ps are given by relations (1.3) and (1.4) respectively. 
We will expand the Lame potentials in series in Legendre polynomials 

(2.4) 

(2.5) 

Substituting expansions (1.3) (1.4) and (2.5) into Eqs (2.1) (2.2) and (2.4) and using the asymptotic 
formula 

a2fn(c0se)/ae2 =--&gc0~e), no I (2.6) 

we determined the unknown coefficients B,, 

B =_ 4U+-ti,,(~) 
n d,hy(X) - Xh”)(X) ’ 

x = 2d2xk3R3 
n 

(2.7) 

do =4DSD,, 4 =a,(ch(a,rl)ch(a,q)D, +sh(a,q)sh(a,q)D,), x = h 

D~ = Yi ch(a,v)sh(a,q) - 4P$fa,a, sh(a,q)ch(a,q), yi = 2,$p; _ k2R2 

D~ = Yi sh(a,rlkh(a2rl) - 4P$$a,a, ch(a,q)sh(a,q), a, = ,/m, i=l,2 

3. THE KIRCHHOFF-LOVE THEORY AND ITS REFINEMENT 

The Kirchhoff-Love theory and its refinements can be regarded as long-wave low-frequency approxi- 
mations of the dynamic equations of the theory of elasticity. Consequently, these theories are suitable 
for approximating the exact solution in the neighbourhood of zero frequency. In this paper we use the 
previously proposed [3] asymptotic model of the interaction of the shell with the fluid, which is based 
on the refined Kirchhoff-Love theory. The application of this model to a spherical shell was considered 
in [4]. 

Using the results obtained in [4], we will write the equations of motion of the shell in terms of 
displacements 

+_R2tgu+V(1+v)R am_0 l-v m2 
2 4 2E ae,- (3.1) 

R~~W+V(1+~)Rm+(l-v2)R2 z=. l-v 

2 c2 E 2Eh 
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where 

a2 
k, =ctg8, A0 =S+k, $-, CD(f)=%+k,f. yr =f-u 

u is the tangential displacement in the direction of the 0 axis, w is the normal displacement (the sag), 
E is Young’s modulus and v is Poisson’s ratio. The quantities Z, m and the reduced frequencies w,, and 
ct.+, are defined as follows: 

z= l- 
( 

ert2Aa (R;+Rs)(r=ov 
I 

m=-(Pi+Ps))r=a 

cl&u = 6.12 
[ 

u + q2(Bm + &,z2 + ~2z4)-$p(u) 1 , z,oh 
c2 

B,=- 
V2 v2(3-5v-v2) v2(-17+56v-33v2-28v3+5v4) 

3(1 -v)* ’ 
B,,, =- 

45( 1 - Lq3 
, B,= 

1260(1- v)4 

7v-17 
A,=- 

15(1-v)’ tbl = 
422-424v-33v2 

1050( I- v) 
, A,, = 

32-96v+261v2-197~~ 

15750(1- v)2 

The impermeability condition has the form 

vn2 w+-Aew-- 
1 

2(1-v) 
vn Q(u)= ‘(Pi + Ps)Ir=a 

(l-v) po2 ar 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The underlined terms in these equations enable us to take into account the transverse squeezing of 
the shell and certain other phenomena (for more detail see [3,4]). Neglecting these, we arrive at a model 
of the interaction of the shell with the fluid, based on the classical Kirchhoff-Love theory. The quantities, 
pi and pS, as previously, are defined by relations (1.3) and (1.4). 

The following relation for the unknown coefficients B, were obtained in [4] 

B = _ d,j:(X)+ti,(X) 
n d,h;“‘(x) + X/P’(X) ’ x= 

n 

&P;2@~4 +W,) (3.6) 

a,, = 1 +v++, a,2 =- 

a*, =2(l+v)+fl+Ns-- l-520: 

2 2 ’ a22 = -Na, , 
c2 

W2 
a3, =I-- N, a32 = N, b, _ ‘(l+‘) ‘q 

2(1-v) (1-v) 2 

1-v* 
b, =v(l+v)-- N=n(n+l), s= N-l+v 

271 

The regions in which the refined asymptotic model and the model based on the classical 
Kirchhoff-Love theory can be used are limited by the inequalities 

oRlc, << TJ-‘. wRlc, 4 r~ -x (3.7) 

respectively (see [3]). Hence, these models are only suitable for describing resonances of the wave A 
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generated by the fluid and resonances of Lamb type waves So and& with numbers II -+ 7-l (the refined 
Kirchhoff-Love theory) and n + n-“’ (the classical Kirchhoff-Love theory). 

4. THE LONG-WAVE HIGH-FREQUENCY APPROXIMATIONS 

The first higher-order Lamb-type wave resonances correspond to long-wave high-frequency 
oscillations of the shell. An asymptotic theory of long-wave high-frequency oscillations of a shell 
immersed in a liquid was constructed in [l, 51. In this theory two types of long-wave high-frequency 
approximations are distinguished. The transverse approximation is used in the neighbourhood of tension- 
compression thickness-resonance frequencies, i.e. ]z - Ast]e 1, where z is given by formula (3.3), 
I& = rrm/y (for antisymmetric modes) and A,r = z(m - t/*)/y (for symmetric modes), m = 1,2 . . . . The 
resolvent of the transverse approximation has the form 

q*(TAgv-fhv)+(z* -A~c)~=f- 

T= ’ - 8 i+- tg 4, 
Y 1 1 A,, aAs, 

(4-l) 

(4.2) 

Here and henceforth the upper (lower) sign and the upper (lower) expression in the braces correspond 
to the antisymmetric (symmetric) modes. 

The impermeability condition is written as follows: 

1 
+(-I)” w(l -q) = - %P; + Ps)J,=, 

pC2k2 ar (4.3) 

In the neighbourhood of the shear thickness-resonance frequencies the tangential approximation is 
used. In this case the resolvent and the impermeability condition take the form 

q* P$(cp(u)) - 4u + (t2 - A;& = 
2(-l)m+’ hy ~ a(pi + p,) 

Ashd af3 
(4.4) 

(4.5) 

In Eqs (4.4) and (4.5) bh = 7c(2m - 1)/2 (f or antisymmetric modes) and &h = 71112 (for symmetric modes); 
m = 1, 2 . . . . They are used when ]z - Ash 1 G 1. 

In Eqs (4.1) and (4.3)-(4.5) the quantities pi andp,, as before, are defined by expansions (1.3) and 
(1.4). Consider the case of the antisymmetric tangential approximation. We expand the displacement 
u in series in Legendre polynomials 

u= g c, ap, ccos e) 

ae 
(4.6) 

n=O 

and substitute expansions (1.3), (1.4) and (4.6) into (4.4) and (4.5), Using the relations 

A0 P, (cos 0) = -n(n + 1) P, (cos e), @(g)eAcose,) = A,p,(cose) (4.7) 

we obtain a system of linear algebraic equations, from which we determine the unknown coefficients 
B,. They have the form 

B,, = - xi;(x) - Q&t4 
Shf'(x) - Qh,!"(x) 

S = -Pn(n + I)- 4 + q-*(z* - Azh), Q = 4n(n + l)hxkp;* ctg*(yA,,)A;i 

(4.8) 
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Fig. 1 

-Exact solution 

- -Refined Kirchhoff-Love theory 
” 

6 

-Flat-layer model 

Fig. 2 

Note that solution (4.8) and similar solutions for other types of long-wave high-frequency 
approximations are only applicable for small values of the parameter n (n e n-r). But series (1.4) only 
begins to converge when n - x - n-l (see [8]), i.e. the solution contains only short-wave components. 
Consequently, when calculating the scattered pressure using formula (1.4) the long-wave high-frequency 
approximations must be used together with the flat-layer model. 
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- Exact solution 

0.6 - Flat-layer model 

--- Long-wave high-frequency approximation 

0.4 

Fig. 3 

- Flat-layer model I 
I --- Refined Kirchhof-Love theory I 

Classical Kirchhoff-Love theory 
, 

____ 

I 

/ 

Fig. 4 

5. MATCHING OF THE ASYMPTOTIC EXPANSIONS 

We will consider the matching of the asymptotic expansions described above. We begin by 
investigating the resonance components of the partial modes using the strict basis [8] 

C, = 
2(2n+ 1) B 

I I 

+ j,‘(x) 
(5.1) 

X “qqiy 

to distinguish the resonances. 
In Fig. 1 we show the resonance components for the Lamb-type wave So, calculated using the refined 

Kirchhoff-Love theory (the dashed curve) and the flat-layer model (the continuous curve). The 
coefficients B, in formula (5.1) were found either from formula (3.6) for the refined Kirchhoff-Love 
theory, or from formula (2.7) for the flat-layer model. The calculations were carried out for the following 
values of the problem parameters 

cl = 5960 m/s, c2 = 3240 m/s, c = 1493 m/s 

(5.2) 

PI = 7700 kg/m’, p = 1000 kplm3, n = l/39 
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Fig. 6 

The exact solution, obtained using the three-dimensional equations of the theory of elasticity (see [7]), 
are also shown in Fig. 1 and are denoted by the continuous heavy curve. A similar comparison of the 
resonance components is shown in Fig. 2 for the wave,4 generated by the fluid (beginning with n = 25 
it is replaced by a Lamb-type wave A,). 

In Fig. 3 we compare the resonance components for a Lamb-type wave A,, corresponding the flat- 
layer model (the continuous curve), the long-wave high-frequency approximation (the dash-dot curve) 
and the exact solution (the continuous heavy curve). For the long-wave high-frequency approximation 
the coefficients B,, are given by formula (4.8). 
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- Exact solution 

- Flat-layer model 

I I 

j 138 140 142 144 1 

150 1.55 160 165 170 175 x 180 

Fig. 7 

In Figs 4 and 5 we show the errors of the approximation of the dispersion curve. Here 

An = Inapp_nexl (5.3) 

where nex and napp are the exact and approximate values of the wave number. In Fig. 4 the values of 
napp for the So wave correspond to the odd numbers of the curves, and for_4 and&, waves they correspond 
to the even numbers of the curves. In Fig. 4 curves 1 and 2, calculated for the exact Kirchhoff-Love 
theory, are shown by the thin dashed lines, curves 3 and 4, for the classical Kirchhoff-Love theory, are 
shown by the thick dashed curves, and curves 5 and 6, obtained for the flat-layer model, are shown by 
the continuous curves. In Fig. 5 we show the errors of the approximation of the dispersion curves An 
for the A, wave, where the values of napp, obtained for the flat-layer model, are represented by the 
continuous curves and the data calculated for the long-wave high-frequency approximation are 
represented by the dash-dot curve. 

Figures l-5 illustrate the existence of regions in which the asymptotic models considered are matched. 
The results of synthesizing the form function of the scattered pressure [8] 

(5.4) 
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in the far field (r -+ -) in the case of backward scattering (0 = 0) are shown in Figs 6 and 7. Data for 
the region where the values of the external wave radius x lie in the range (20, 60) are not shown in 
Fig. 6. In this region both the refined Kirchhoff-Love theory and the flat-layer model describe the form 
function of the scattered pressurep quite accurately. In Fig. 7, when making calculations using the long- 
wave high-frequency approximation, solution (4.8) was only used for II < 10. To calculate the remaining 
terms of series (5.4) we used the flat-layer model. This scheme enables the first resonances of the Lamb- 
type wave A, to be described exactly. 

The results presented in Figs l-7 show that the approach proposed in this paper enables the solution 
of the scattering problem to be approximated quite accurately. We also note that the refined 
Kirchhoff-Love theory, without being in any way inferior in simplicity to the classical theory, has a much 
wider range of application. 

As is well known, an exact solution of the scattering problem only exists for spherical and circular 
cylindrical shells. The approach developed above can be extended to shells of more complex shape, for 
which there is no exact solution. 
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